Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.846
Filtrar
1.
Onderstepoort J Vet Res ; 91(1): e1-e6, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38572889

RESUMO

Global aflatoxin contamination of agricultural commodities is of the most concern in food safety and quality. This study investigated the hepatoprotective effect of 80% methanolic leaf extract of Annona senegalensis against aflatoxin B1 (AFB1)-induced toxicity in rats. A. senegalensis has shown to inhibit genotoxicity of aflatoxin B1 in vitro. The rats were divided into six groups including untreated control, aflatoxin B1 only (negative control); curcumin (positive control; 10 mg/kg); and three groups receiving different doses (100 mg/kg, 200 mg/kg, and 300 mg/kg) of A. senegalensis extract. The rats received treatment (with the exception of untreated group) for 7 days prior to intoxication with aflatoxin B1. Serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were measured. Hepatic tissues were analysed for histological alterations. Administration of A. senegalensis extract demonstrated hepatoprotective effects against aflatoxin B1-induced toxicity in vivo by significantly reducing the level of serum aspartate aminotransferase and alanine aminotransferase and regenerating the hepatocytes. No significant changes were observed in the levels of alkaline phosphatase, lactate dehydrogenase, and creatinine for the AFB1 intoxicated group, curcumin+AFB1 and Annona senegalensis leaf extract (ASLE)+AFB1 (100 mg/kg, 200 mg/kg, and 300 mg/kg body weight [b.w.]) treated groups. Annona senegalensis is a good candidate for hepatoprotective agents and thus its use in traditional medicine may at least in part be justified.Contribution: The plant extract investigated in this study can be used in animal health to protect the organism from toxicity caused by mycotoxins.


Assuntos
Annona , Curcumina , Ratos , Animais , Aflatoxina B1/toxicidade , Curcumina/farmacologia , Alanina Transaminase/farmacologia , Fosfatase Alcalina/farmacologia , Creatinina/farmacologia , Fígado , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Aspartato Aminotransferases/farmacologia , Lactato Desidrogenases
2.
ACS Appl Mater Interfaces ; 16(14): 17080-17091, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557004

RESUMO

Psoriasis is a systemic, recurrent, chronic autoimmune skin disease. However, psoriasis drugs have poor skin permeability and high toxicity, resulting in low bioavailability and affecting their clinical application. In this study, we propose a curcumin-based ionic liquid hydrogel loaded with ilomastat (Cur-Car-IL@Ilo hydrogel), which can effectively maintain the sustained release of drugs and improve the skin permeability of drugs. We used a model of imiquimod-induced psoriasis and demonstrated that local application of Cur-Car-IL@Ilo hydrogel can improve skin lesions in mice with significantly reduced expression levels of inflammatory factors, matrix metalloproteinase 8, and collagen-I. The expressions of iron death-related proteins SLC7A11 and ASL4 were significantly decreased after treatment with Cur-Car-IL@Ilo hydrogel. Flora analysis showed that the content of anaerotruncus, proteus, and UCG-009 bacteria in the gut of psoriatic mice increased. The levels of paludicola, parabacteroides, prevotellaceae_UCG-001, escherichia-shigella, and aerococcus decreased, and the levels of some of the above bacteria tended to be normal after treatment. Therefore, the curcumin-based ionic liquid hydrogel can be used as a multifunctional, nonirritating, noninvasive, and highly effective percutaneous treatment of psoriasis.


Assuntos
Curcumina , Líquidos Iônicos , Psoríase , Camundongos , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Hidrogéis/uso terapêutico , Psoríase/tratamento farmacológico , Psoríase/patologia , Administração Cutânea , Modelos Animais de Doenças
3.
Sci Rep ; 14(1): 8176, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589505

RESUMO

Knee osteoarthritis (KOA) usually leads to quadriceps femoris atrophy, which in turn can further aggravate the progression of KOA. Curcumin (CUR) has anti-inflammatory and antioxidant effects and has been shown to be a protective agent for skeletal muscle. CUR has been shown to have a protective effect on skeletal muscle. However, there are no studies related to whether CUR improves KOA-induced quadriceps femoris muscle atrophy. We established a model of KOA in rats. Rats in the experimental group were fed CUR for 5 weeks. Changes in autophagy levels, reactive oxygen species (ROS) levels, and changes in the expression of the Sirutin3 (SIRT3)-superoxide dismutase 2 (SOD2) pathway were detected in the quadriceps femoris muscle of rats. KOA led to quadriceps femoris muscle atrophy, in which autophagy was induced and ROS levels were increased. CUR increased SIRT3 expression, decreased SOD2 acetylation and ROS levels, inhibited the over-activation of autophagy, thereby alleviating quadriceps femoris muscle atrophy and improving KOA. CUR has a protective effect against quadriceps femoris muscle atrophy, and KOA is alleviated after improvement of quadriceps femoris muscle atrophy, with the possible mechanism being the reduction of ROS-induced autophagy via the SIRT3-SOD2 pathway.


Assuntos
Curcumina , Osteoartrite do Joelho , Sirtuína 3 , Superóxido Dismutase , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Osteoartrite do Joelho/patologia , Músculo Quadríceps/metabolismo , Sirtuína 3/metabolismo , Curcumina/farmacologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Autofagia , Transdução de Sinais
4.
Parasitol Res ; 123(4): 185, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632113

RESUMO

Leishmania braziliensis (L. braziliensis) causes cutaneous leishmaniasis (CL) in the New World. The costs and the side effects of current treatments render imperative the development of new therapies that are affordable and easy to administer. Topical treatment would be the ideal option for the treatment of CL. This underscores the urgent need for affordable and effective treatments, with natural compounds being explored as potential solutions. The alkaloid piperine (PIP), the polyphenol curcumin (CUR), and the flavonoid quercetin (QUE), known for their diverse biological properties, are promising candidates to address these parasitic diseases. Initially, the in vitro cytotoxicity activity of the compounds was evaluated using U-937 cells, followed by the assessment of the leishmanicidal activity of these compounds against amastigotes of L. braziliensis. Subsequently, a golden hamster model with stationary-phase L. braziliensis promastigote infections was employed. Once the ulcer appeared, hamsters were treated with QUE, PIP, or CUR formulations and compared to the control group treated with meglumine antimoniate administered intralesionally. We observed that the three organic compounds showed high in vitro leishmanicidal activity with effective concentrations of less than 50 mM, with PIP having the highest activity at a concentration of 8 mM. None of the compounds showed cytotoxic activity for U937 macrophages with values between 500 and 700 mM. In vivo, topical treatment with QUE daily for 15 days produced cured in 100% of hamsters while the effectiveness of CUR and PIP was 83% and 67%, respectively. No failures were observed with QUE. Collectively, our data suggest that topical formulations mainly for QUE but also for CUR and PIP could be a promising topical treatment for CL. Not only the ease of obtaining or synthesizing the organic compounds evaluated in this work but also their commercial availability eliminates one of the most important barriers or bottlenecks in drug development, thus facilitating the roadmap for the development of a topical drug for the management of CL caused by L. braziliensis.


Assuntos
Alcaloides , Antiprotozoários , Benzodioxóis , Curcumina , Leishmania braziliensis , Leishmaniose Cutânea , Piperidinas , Alcamidas Poli-Insaturadas , Cricetinae , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Curcumina/farmacologia , Leishmaniose Cutânea/parasitologia , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Mesocricetus , Antiprotozoários/farmacologia
5.
J Nanobiotechnology ; 22(1): 181, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622641

RESUMO

Periodontitis is an inflammatory disease induced by the complex interactions between the host immune system and the microbiota of dental plaque. Oxidative stress and the inflammatory microenvironment resulting from periodontitis are among the primary factors contributing to the progression of the disease. Additionally, the presence of dental plaque microbiota plays a significant role in affecting the condition. Consequently, treatment strategies for periodontitis should be multi-faceted. In this study, a reactive oxygen species (ROS)-responsive drug delivery system was developed by structurally modifying hyaluronic acid (HA) with phenylboronic acid pinacol ester (PBAP). Curcumin (CUR) was encapsulated in this drug delivery system to form curcumin-loaded nanoparticles (HA@CUR NPs). The release results indicate that CUR can be rapidly released in a ROS environment to reach the concentration required for treatment. In terms of uptake, HA can effectively enhance cellular uptake of NPs because it specifically recognizes CD44 expressed by normal cells. Moreover, HA@CUR NPs not only retained the antimicrobial efficacy of CUR, but also exhibited more pronounced anti-inflammatory and anti-oxidative stress functions both in vivo and in vitro. This provides a good potential drug delivery system for the treatment of periodontitis, and could offer valuable insights for dental therapeutics targeting periodontal diseases.


Assuntos
Ácidos Borônicos , Curcumina , Placa Dentária , Glicóis , Nanopartículas Multifuncionais , Nanopartículas , Periodontite , Humanos , Curcumina/farmacologia , Espécies Reativas de Oxigênio , Ésteres , Periodontite/tratamento farmacológico , Ácido Hialurônico/farmacologia
6.
Acta Cir Bras ; 39: e392124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629652

RESUMO

PURPOSE: To evaluate the effects of curcumin supplementation on abdominal surgical wound healing in rats using clinical, histological, and hematological parameters. METHODS: Forty Wistar rats were randomly divided into two groups: the curcumin group, and the control group. The curcumin group received, in addition to water and standard feed, curcumin via gavage at the dose of 200 mg/kg for seven days preceding and seven days following surgery. The control group received only water and standard feed. Both groups underwent median laparotomy and left colotomy. On the eighth postoperative day, the groups were euthanized, and the left colon was resected for histological analysis. RESULTS: In the preoperative evaluation, there was a significant decrease in the mean C-reactive protein levels in the curcumin group (0.06) compared to the control group (0.112) (p = 0.0001). In the postoperative wound healing assessment, a significant decrease was observed in inflammatory infiltrate (p = 0.0006) and blood vessel count (p = 0.0002) in the curcumin group compared to the control group. CONCLUSIONS: Curcumin supplementation was able to significantly reduce inflammatory parameters in both pre-and post-operative phases of abdominal surgical wounds in rats.


Assuntos
Curcumina , Ferida Cirúrgica , Ratos , Animais , Curcumina/farmacologia , Ratos Wistar , Ferida Cirúrgica/tratamento farmacológico , Cicatrização , Água/farmacologia , Suplementos Nutricionais
7.
Molecules ; 29(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611731

RESUMO

Although identical in molecular formula and weight, curcumin and cyclocurcumin show remarkable differences in their reactivity. Both are natural compounds isolated from the rhizome of turmeric, the former is involved in the diketo/keto-enol tautomerism through the bis-α,ß-unsaturated diketone unit according to the polarity of the solvent, while the latter could react by trans-cis isomerization due to the presence of the α,ß-unsaturated dihydropyranone moiety. Even if curcumin is generally considered responsible of the therapeutical properties of Curcuma longa L. due to its high content, cyclocurcumin has attracted great interest over the last several decades for its individual behavior and specific features as a bioactive compound. Cyclocurcumin has a hydrophobic nature characterized by fluorescence emission, solvatochromism, and the tendency to form spherical fluorescent aggregates in aqueous solution. Molecular docking analysis reveals the potentiality of cyclocurcumin as antioxidant, enzyme inhibitor, and antiviral agent. Promising biological activities are observed especially in the treatment of degenerative and cardiovascular diseases. Despite the versatility emerging from the data reported herein, the use of cyclocurcumin seems to remain limited in clinical applications mainly because of its low solubility and bioavailability.


Assuntos
Curcumina , Curcumina/análogos & derivados , Piranos , Curcumina/farmacologia , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Antivirais
8.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612433

RESUMO

Curcumin is a polyphenolic molecule derived from the rhizoma of Curcuma longa L. This compound has been used for centuries due to its anti-inflammatory, antioxidant, and antimicrobial properties. These make it ideal for preventing and treating skin inflammation, premature skin ageing, psoriasis, and acne. Additionally, it exhibits antiviral, antimutagenic, and antifungal effects. Curcumin provides protection against skin damage caused by prolonged exposure to UVB radiation. It reduces wound healing times and improves collagen deposition. Moreover, it increases fibroblast and vascular density in wounds. This review summarizes the available information on the therapeutic effect of curcumin in treating skin diseases. The results suggest that curcumin may be an inexpensive, well-tolerated, and effective agent for treating skin diseases. However, larger clinical trials are needed to confirm these observations due to limitations in its in vivo use, such as low bioavailability after oral administration and metabolism.


Assuntos
Senilidade Prematura , Curcumina , Dermatite , Psoríase , Dermatopatias , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Dermatopatias/tratamento farmacológico , Pele
9.
Mol Biol Rep ; 51(1): 558, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643323

RESUMO

BACKGROUND: Our previous research shows that Curcumin (CUR) attenuates myocardial ischemia-reperfusion injury (MIRI) by reducing intracellular total RNA m6A levels. However, the mechanism remains unknown. METHODS: For ischemia-reperfusion (IR), H9c2 cells were cultured for 6 h in serum-free low-glycemic (1 g/L) medium and a gas environment without oxygen, and then cultured for 6 h in high-glycemic (4.5 g/L) medium supplemented with 10% FBS and a 21% oxygen environment. The effects of different concentrations of CUR (5, 10, and 20 µM) treatments on signaling molecules in conventionally cultured and IR-treated H9c2 cells were examined. RESULTS: CUR treatment significantly up-regulated the H2S levels, and the mRNA and protein expression of cystathionine γ-lyase (CSE), and down-regulated the mRNAs and proteins levels of thiosulfate sulfurtransferase (TST) and ethylmalonic encephalopathy 1 (ETHE1) in H9c2 cells conventionally cultured and subjected to IR. Exogenous H2S supply (NaHS and GYY4137) significantly reduced intracellular total RNA m6A levels, and the expression of RNA m6A "writers" METTL3 and METTL14, and increased the expression of RNA m6A "eraser" FTO in H9c2 cells conventionally cultured and subjected to IR. CSE knockdown counteracted the inhibitory effect of CUR treatment on ROS production, promotion on cell viability, and inhibition on apoptosis of H9c2 cells subjected to IR. CONCLUSION: CUR attenuates MIRI by regulating the expression of H2S level-regulating enzymes and increasing the endogenous H2S levels. Increased H2S levels could regulate the m6A-related proteins expression and intracellular total RNA m6A levels.


Assuntos
Curcumina , Sulfeto de Hidrogênio , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Curcumina/farmacologia , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , RNA , Oxigênio/metabolismo , Metiltransferases/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Dioxigenase FTO Dependente de alfa-Cetoglutarato
10.
J Physiol Pharmacol ; 75(1)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583436

RESUMO

The treatment of patients with acute pulmonary embolism (APE) is extremely challenging due to the complex clinical presentation and prognosis of APE related to the patient's hemodynamic status and insufficient arterial blood flow and right ventricular overload. Protective efficacy against cardiovascular diseases of curcumin, a common natural polyphenolic compound, which has antithrombotic properties and reduces platelet accumulation in the circulation by inhibiting thromboxane synthesis has been demonstrated. However, the direct effect of curcumin on APE has rarely been studied. Therefore, the present study aimed to investigate the therapeutic potential of curcumin in APE and associated myocardial injury to provide new insights into curcumin as a promising competitive new target for the treatment of APE. A suspension of 12 mg/kg microspheres was injected intravenously into rats. An APE rat model was built. Before modeling, intragastric 100 mg/kg curcumin was given, and/or lentiviral plasmid vector targeting microRNA-145-5p or insulin receptor substrate 1 (IRS1) was injected. Pulmonary artery pressure was measured to assess right ventricular systolic pressure (RVSP). Hematoxylin and eosin (H&E) staining was performed on liver tissues and myocardial tissues of APE rats. TUNEL (terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling) staining and immunohistochemical (IHC) staining were conducted to measure apoptosis and CyPA-CD147 expression in the myocardium, respectively. Inflammatory indices interleukin-1beta (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) were measured by ELISA in cardiac tissues. RT-qPCR and Western blot were performed to determine the expression levels of related genes. In addition, by dual luciferase reporter assay and RIP assay, the relationship between microRNA-145-5p and insulin receptor substrate 1 (IRS1) was confirmed. In results: curcumin improved APE-induced myocardial injury, reduced myocardial tissue edema, and thrombus volume. It attenuated APE-induced myocardial inflammation and apoptosis, as well as reduced lung injury and pulmonary artery pressure. Curcumin promoted microRNA-145-5p expression in APE rat myocardium. MicroRNA-145-5p overexpression protected against APE-induced myocardial injury, and microRNA-145-5p silencing abolished the beneficial effects of curcumin in APE-induced myocardial injury. IRS1 was targeted by microRNA-145-5p. IRS1 silencing attenuated APE-induced myocardial injury, and enhanced therapeutic effect of curcumin on myocardial injury in APE rats. In conclusion, curcumin alleviates myocardial inflammation, apoptosis, and oxidative stress induced by APE by regulating microRNA-145-5p/IRS1 axis.


Assuntos
Curcumina , Hominidae , MicroRNAs , Miocardite , Embolia Pulmonar , Humanos , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Proteínas Substratos do Receptor de Insulina/metabolismo , Interleucina-6/metabolismo , Apoptose , Inflamação/tratamento farmacológico , Estresse Oxidativo , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/genética , Hominidae/genética , Hominidae/metabolismo
11.
Fungal Biol ; 128(2): 1691-1697, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575242

RESUMO

Curcumin, a natural bioactive compound derived from Curcuma longa, has been widely recognized for its antifungal properties. In this study, we investigated the effects of curcumin on the phytopathogenic fungus Alternaria alternata and its pathogenicity in cherry tomato fruit. The results demonstrated that curcumin treatment significantly inhibited mycelial growth and spore germination of A. alternata in a dose-dependent manner. Scanning electron microscopy revealed alterations in the morphology of A. alternata mycelia treated with curcumin. Furthermore, curcumin treatment led to an increase in malondialdehyde and hydrogen peroxide contents, indicating cell membrane damage in A. alternata. Moreover, curcumin exhibited a remarkable inhibitory effect on the incidence and lesion diameters of black rot caused by A. alternata in cherry tomato fruit. Gene expression analysis revealed upregulation of defense-related genes (POD, SOD, and CAT) in tomato fruit treated with curcumin. Additionally, curcumin treatment resulted in decreased activity of exocellular pathogenic enzymes (polygalacturonase, pectin lyase, and endo-1,4-ß-d-glucanase) in A. alternata. Overall, our findings highlight the potential of curcumin as an effective antifungal agent against A. alternata, providing insights into its inhibitory mechanisms on mycelial growth, spore germination, and pathogenicity in cherry tomato fruit.


Assuntos
Curcumina , Solanum lycopersicum , Curcumina/farmacologia , Antifúngicos/farmacologia , Alternaria
12.
BMC Complement Med Ther ; 24(1): 143, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575891

RESUMO

BACKGROUND: This study aimed to determine the therapeutic efficacy of curcumin nanoemulsion (CUR-NE) in mice infected with Echinococcus granulosus sensu stricto protoscoleces. METHODS: Forty-two inbred BALB/c mice were divided into seven groups of six animals each. Six groups were inoculated intra-peritoneally with 1500 viable E. granulosus protoscoleces, followed for six months and used as infected groups. The infected groups were named as: CEI1 to CEI6 accordingly. The 7th group was not inoculated and was named cystic echinococcosis noninfected group (CENI7). CEI1 and CEI2 groups received 40 mg/kg/day and 20 mg/kg/day curcumin nanoemulsion (CUR-NE), respectively. CEI3 received nanoemulsion without curcumin (NE-no CUR), CEI4 received curcumin suspension (CUR-S) 40 mg/kg/day, CEI5 received albendazole 150 mg/kg/day and CEI6 received sterile phosphate-buffered saline (PBS). CENI7 group received CUR-NE 40 mg/kg/day. Drugs administration was started after six months post-inoculations of protoscoleces and continued for 60 days in all groups. The secondary CE cyst area was evaluated by computed tomography (CT) scan for each mouse before treatment and on the days 30 and 60 post-treatment. The CT scan measurement results were compared before and after treatment. After the euthanasia of the mice on the 60th day, the cyst area was also measured after autopsy and, the histopathological changes of the secondary cysts for each group were observed. The therapeutic efficacy of CUR-NE in infected groups was evaluated by two methods: CT scan and autopsied cyst measurements. RESULTS: Septal calcification in three groups of infected mice (CEI1, CEI2, and CEI4) was revealed by CT scan. The therapeutic efficacy of CUR-NE 40 mg/kg/day (CEI1 group) was 24.6 ± 26.89% by CT scan measurement and 55.16 ± 32.37% by autopsied cysts measurements. The extensive destructive effects of CUR-NE 40 mg/kg/day (CEI1 group) on the wall layers of secondary CE cysts were confirmed by histopathology. CONCLUSION: The current study demonstrated a significant therapeutic effect of CUR-NE (40 mg/kg/day) on secondary CE cysts in BALB/c mice. An apparent septal calcification of several cysts revealed by CT scan and the destructive effect on CE cysts observed in histopathology are two critical key factors that suggest curcumin nanoemulsion could be a potential treatment for cystic echinococcosis.


Assuntos
Curcumina , Cistos , Equinococose , Animais , Camundongos , Curcumina/farmacologia , Curcumina/uso terapêutico , Camundongos Endogâmicos BALB C , Equinococose/diagnóstico por imagem , Equinococose/tratamento farmacológico , Tomografia
13.
J Orthop Surg Res ; 19(1): 169, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448971

RESUMO

OBJECTIVE: The objective of this study is to investigate the impact of four natural product extracts, namely, aloe-emodin, quercetin, curcumin, and tannic acid, on the in vitro bacteriostatic properties and biocompatibility of gentamicin-loaded bone cement and to establish an experimental groundwork supporting the clinical utility of antibiotic-loaded bone cements (ALBC). METHODS: Based on the components, the bone cement samples were categorized as follows: the gentamicin combined with aloe-emodin group, the gentamicin combined with quercetin group, the gentamicin combined with curcumin group, the gentamicin combined with tannic acid group, the gentamicin group, the aloe-emodin group, the quercetin group, the curcumin group, and the tannic acid group. Using the disk diffusion test, we investigated the antibacterial properties of the bone cement material against Staphylococcus aureus (n = 4). We tested cell toxicity and proliferation using the cell counting kit-8 (CCK-8) and examined the biocompatibility of bone cement materials. RESULTS: The combination of gentamicin with the four natural product extracts resulted in significantly larger diameters of inhibition zones compared to gentamicin alone, and the difference was statistically significant (P < 0.05). Except for the groups containing tannic acid, cells in all other groups showed good proliferation across varying time intervals without displaying significant cytotoxicity (P < 0.05). CONCLUSION: In this study, aloe-emodin, quercetin, curcumin, and tannic acid were capable of enhancing the in vitro antibacterial performance of gentamicin-loaded bone cement against S. aureus. While the groups containing tannic acid displayed moderate cytotoxicity in in vitro cell culture, all other groups showed no discernible cytotoxic effects.


Assuntos
Antraquinonas , Produtos Biológicos , Curcumina , Emodina , Polifenóis , Gentamicinas/farmacologia , Cimentos Ósseos/farmacologia , Curcumina/farmacologia , Quercetina , Staphylococcus aureus , Antibacterianos/farmacologia , Produtos Biológicos/farmacologia
14.
Bioorg Med Chem Lett ; 102: 129682, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432287

RESUMO

Amphiphilic peptide sequences are conducive to secondary structures that self-assemble into higher-ordered peptide nanostructures. A select set of amphiphilic polycationic peptides displayed stable helical-coiled structures that self-assembled into peptide nanofibers. The progression of peptide fibril formation revealed short protofibrils that extended into thin filaments and into an entangled network of nanofibers over an extended (5 days) incubation period. Ligand binding with 8-anilinonaphthalene-1-sulfonic acid (ANS) and Congo Red (CR) confirmed the amphiphilic helical-coiled peptide structure assembly into nanofibers, whereas curcumin treatment led to inhibition of fibril formation. Considering the vast repertoire of fibrous biomaterials and peptide or protein (mis)folding contingent on fibril formation, this work relates the molecular interplay in between sequence composition, structural folding and the ligand binding events impacting peptide self-assembly into nanofibers.


Assuntos
Curcumina , Nanofibras , Nanofibras/química , Curcumina/farmacologia , Ligantes , Peptídeos/farmacologia , Peptídeos/química , Sequência de Aminoácidos
15.
Lasers Med Sci ; 39(1): 91, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491201

RESUMO

Investigating combined treatment methodologies is crucial for addressing the complex nature of cancer. As an emerging strategy, nano-biotechnology encourages the design of unique nanocarriers possessing simultaneous therapeutic application properties. This study aims to explore the combined effects of photodynamic and anticancer treatments using a multifunctional nanocarrier system co-administering the photosensitizer IR780 and the anticancer agent curcumin (Cur) on lung cancer cells. Nanocarriers were prepared by encapsulation IR780 and Cur inside polyethylene glycol-capped mesoporous silica nanoparticles (Cur&IR780@MSN). Various concentrations of nanocarriers were evaluated on A549 cells following 5 min NIR laser light (continuous wave, 785 nm, 500 mW/cm2) irradiation. The internalization of nanocarriers was observed through the fluorescence of Cur. Changes in cell viability were determined using the MTT assay and AO/PI staining. A scratch assay analysis was also performed to examine the impact of combined treatments on cell migration. Characterization of the nanocarriers revealed adequate hydrophobic drug loading, temperature-inhibited feature, enhanced reactive oxygen species generation, a pH-dependent curcumin release profile, and high biocompatibility. Cur&IR780@MSN, which enabled the observation of synergistic treatment efficacy, successfully reduced cell viability by up to 78%. In contrast, monotherapies with curcumin-loaded nanocarriers (Cur@MSN) and IR780-loaded nanocarriers (IR780@MSN) resulted in a 38% and 56% decrease in cell viability, respectively. The constructed Cur&IR780@MSN nanocarrier has demonstrated remarkable performance in the application of combination therapies for lung cancer cells. These nanocarriers have the potential to inspire future studies in tumor treatment methods.


Assuntos
Antineoplásicos , Curcumina , Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Curcumina/farmacologia , Curcumina/uso terapêutico , Dióxido de Silício/química , Portadores de Fármacos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/química
16.
Am J Chin Med ; 52(2): 565-581, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38480502

RESUMO

L48H37 is a synthetic curcumin analog that has anticancer potentials. Here, we further explored the anticancer effect of L48H37 on oral cancer cells and its mechanistic acts. Cell cycle distribution was assessed using flow cytometric analysis. Apoptosis was elucidated by staining with PI/Annexin V and activation of the caspase cascade. Cellular signaling was explored using apoptotic protein profiling, Western blotting, and specific inhibitors. Our findings showed that L48H37 significantly reduced the cell viability of SCC-9 and HSC-3 cells, resulting in sub-G1 phase accumulation and increased apoptotic cells. Apoptotic protein profiling revealed that L48H37 increased cleaved caspase-3, and downregulated cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP) in SCC-9 cells, and the downregulated cIAP1 and XIAP in both oral cancer cells were also demonstrated by Western blotting. Meanwhile, L48H37 triggered the activation of caspases and mitogen-activated protein kinases (MAPKs). The involvement of c-Jun N-terminal kinase (JNK) and p38 MAPK (p38) in the L48H37-triggered apoptotic cascade in oral cancer cells was also elucidated by specific inhibitors. Collectively, these findings indicate that L48H37 has potent anticancer activity against oral cancer cells, which may be attributed to JNK/p38-mediated caspase activation and the resulting apoptosis. This suggests a potential benefit for L48H37 for the treatment of oral cancer.


Assuntos
Curcumina , Neoplasias Bucais , Humanos , Caspases/metabolismo , Curcumina/farmacologia , Linhagem Celular Tumoral , Apoptose , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Caspase 3/metabolismo , Neoplasias Bucais/tratamento farmacológico , Proteínas Inibidoras de Apoptose/farmacologia
17.
Int J Biol Macromol ; 265(Pt 2): 131088, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521315

RESUMO

Curcumin is a multitargeting nutraceutical with numerous health benefits, however, its efficacy is limited due to poor aqueous solubility and reduced bioavailability. While nano-formulation has emerged as an alternative to encounter such issues, it often involves use of toxic solvents. Microbial synthesis may be an innovative solution to address this lacuna. Present study, for the first time, reports exploitation of Aureobasidium pullulans RBF4A3 for production of nano-curcumin. For this purpose, Aureobasidium pullulans RBF4A3 was inoculated in YPD media along with curcumin (0.1 mg/mL) and incubated for 24 h, 48 h, and 72 h. Subsequently, residual sugar, biomass, EPS concentration, curcumin concentration, and curcumin nanoparticle size were measured. As a result, nano-curcumin with an average particle size of 31.63 nm and enhanced aqueous solubility was obtained after 72 h. Further, investigations suggested that pullulan, a reducing polysaccharide, played a significant role in curcumin nano-formulation. Pullulan-mediated nano-curcumin formulation, with an average particle size of 24 nm was achieved with conversion rate of around 59.19 %, suggesting improved aqueous solubility. Additionally, the anti-oxidant assay of the resulting nano-curcumin was around 53.7 % per µg. Moreover, kinetics and thermodynamic studies of pullulan-based nano-curcumin revealed that it followed first-order kinetics and was favored by elevated temperature for efficient bio-conversion. Also, various physico-chemical investigations like FT-IR, NMR, and XRD reveal that pullulan backbone remains intact while forming curcumin nanoparticle. This study may open up new avenues for synthesizing nano-polyphenols through a completely green and solvent free process with plausible diverse applications.


Assuntos
Ascomicetos , Aureobasidium , Curcumina , Glucanos , Fermentação , Curcumina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Ascomicetos/química , Água/química
18.
ACS Appl Bio Mater ; 7(4): 2175-2185, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478917

RESUMO

Lung cancer and Mycobacterium avium complex infection are lung diseases associated with high incidence and mortality rates. Most conventional anticancer drugs and antibiotics have certain limitations, including high drug resistance rates and adverse effects. Herein, we aimed to synthesize mannose surface-modified solid lipid nanoparticles (SLNs) loaded with curcumin (Man-CUR SLN) for the effective treatment of lung disease. The synthesized Man-CUR SLNs were analyzed using various instrumental techniques for structural and physicochemical characterization. Loading curcumin into SLNs improved the encapsulation efficiency and drug release capacity, as demonstrated by high-performance liquid chromatography analysis. Furthermore, we characterized the anticancer effect of curcumin using the A549 lung cancer cell line. Cells treated with Man-CUR SLN exhibited an increased cellular uptake and cytotoxicity. Moreover, treatment with free CUR could more effectively reduce cancer migration than treatment with Man-CUR SLNs. Similarly, free curcumin elicited a stronger apoptosis-inducing effect than that of Man-CUR SLNs, as demonstrated by reverse transcription-quantitative PCR analysis. Finally, we examined the antibacterial effects of free curcumin and Man-CUR SLNs against Mycobacterium intracellulare (M.i.) and M.i.-infected macrophages, revealing that Man-CUR SLNs exerted the strongest antibacterial effect. Collectively, these findings indicate that mannose-receptor-targeted curcumin delivery using lipid nanoparticles could be effective in treating lung diseases. Accordingly, this drug delivery system can be used to target a variety of cancers and immune cells.


Assuntos
Curcumina , Lipossomos , Neoplasias Pulmonares , Nanopartículas , Humanos , Curcumina/farmacologia , Curcumina/química , Manose , Lipídeos , Neoplasias Pulmonares/tratamento farmacológico
19.
Int J Biol Macromol ; 265(Pt 1): 130805, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490382

RESUMO

In order to overcome the problem that traditional W1/O/W2 double emulsions do not have targeted release performance, thereby better meeting the health needs of consumers, ovalbumin fibrils/pectin-based bilayer-stabilized double emulsion (OP-BDE) co-encapsulated with Lactobacillus plantarum and curcumin was constructed with pectin as the outer protective shell, which was expected to be used in the development of novel functional foods. The effects of pectin coating on the viability of Lactobacillus plantarum under conditions including storage, pasteurization, freeze-thaw cycles and in vitro simulated digestion were investigated. Results showed that pectin as protective shell could significantly enhance the tolerance of Lactobacillus plantarum to various environmental factors. Besides, the adsorption of pectin endowed OP-BDE with higher lipolysis and stronger protective effect on curcumin, remarkably improving the photostability and bioaccessibility of curcumin. In addition, in vitro simulated gastrointestinal release study indicated that OP-BDE possessed programmed sequential release property, allowing curcumin and Lactobacillus plantarum to be released in small intestine and colon, respectively. OP-BDE is the first reported co-delivery emulsion system with programmed release characteristic. This study provides new insights into OP-BDE in constructing co-delivery systems and programmed sequential release of active substances, and has potential reference and application value in actual food production.


Assuntos
Curcumina , Lactobacillus plantarum , Emulsões , Curcumina/farmacologia , Pectinas , Trato Gastrointestinal
20.
Asian Pac J Cancer Prev ; 25(3): 1035-1043, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546086

RESUMO

OBJECTIVE: The aim of the present study was to examine whether GLUT1 was involved in the antiproliferative activity of curcumin and doxorubicin by understanding mechanistically how curcumin regulated GLUT1. METHODS: Expression level of GLUT1 in MCF-7 and MDA-MB-231 cells were quantitated using quantitative real-time PCR and western blot. GLUT1 activity was inhibited in MDA-MB-231 cells with the pharmacological inhibitor WZB117 to assess the anti-proliferative effects of doxorubicin using MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide).  To examine cell proliferation, trypan blue assay was used in cells transfected with GLUT1 siRNA or plasmid overexpressing GLUT1 with doxorubicin and/or commercially available curcumin. The role of PPARδ and Akt on the regulation of GLUT1 by curcumin was examined by overexpressing these proteins and western blot was employed to examine their protein expression. RESULTS: The data revealed that there was a 1.5 fold increase in GLUT1 mRNA and protein levels in MDA-MB-231 compared to MCF-7.  By inhibiting GLUT1 in triple negative breast cancer cell line, MDA-MB-231 with either the pharmacological inhibitor WZB117 or with GLUT1 siRNA, we observed the enhanced antiproliferative effects of doxorubicin. Additional observations indicated these effects can be reversed by the overexpression of GLUT1. Treatment of MDA-MB-231 with curcumin also revealed downregulation of GLUT1, with further growth suppressive effects when combined with doxorubicin.  Overexpression of GLUT1 blocked the growth suppressive role of curcumin and doxorubicin (p< 0.05). Mechanistically, we also observed that the regulation of GLUT1 by curcumin was mediated by the Peroxisome proliferator-activated receptor (PPAR) δ/Akt pathway. CONCLUSION: Our study demonstrates that regulation of GLUT1 by curcumin via the PPARδ/Akt signaling improves the efficacy of doxorubicin by promoting its growth inhibitory effects in MDA-MB-231 cells.


Assuntos
Neoplasias da Mama , Curcumina , Hidroxibenzoatos , PPAR delta , Humanos , Feminino , Curcumina/farmacologia , Células MDA-MB-231 , PPAR delta/metabolismo , PPAR delta/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transportador de Glucose Tipo 1/genética , Doxorrubicina/farmacologia , Proliferação de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...